首页> 外文OA文献 >Gated XNOR Networks: Deep Neural Networks with Ternary Weights and Activations under a Unified Discretization Framework
【2h】

Gated XNOR Networks: Deep Neural Networks with Ternary Weights and Activations under a Unified Discretization Framework

机译:门控XNOR网络:具有三元权重和神经网络的深度神经网络   统一离散化框架下的激活

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is a pressing need to build an architecture that could subsume thesenetworks undera unified framework that achieves both higher performance andless overhead. To this end, two fundamental issues are yet to be addressed. Thefirst one is how to implement the back propagation when neuronal activationsare discrete. The second one is how to remove the full-precision hidden weightsin the training phase to break the bottlenecks of memory/computationconsumption. To address the first issue, we present a multistep neuronalactivation discretization method and a derivative approximation technique thatenable the implementing the back propagation algorithm on discrete DNNs. Whilefor the second issue, we propose a discrete state transition (DST) methodologyto constrain the weights in a discrete space without saving the hidden weights.In this way, we build a unified framework that subsumes the binary or ternarynetworks as its special cases.More particularly, we find that when both theweights and activations become ternary values, the DNNs can be reduced to gatedXNOR networks (or sparse binary networks) since only the event of non-zeroweight and non-zero activation enables the control gate to start the XNOR logicoperations in the original binary networks. This promises the event-drivenhardware design for efficient mobile intelligence. We achieve advancedperformance compared with state-of-the-art algorithms. Furthermore,thecomputational sparsity and the number of states in the discrete space can beflexibly modified to make it suitable for various hardware platforms.
机译:迫切需要建立一种可以将这些网络包含在一个统一框架下的架构,该架构既可以实现更高的性能又可以减少开销。为此,两个基本问题尚待解决。第一个是神经元激活离散时如何实现反向传播。第二个方法是如何在训练阶段删除高精度的隐藏权重,以突破内存/计算消耗的瓶颈。为了解决第一个问题,我们提出了一种多步神经元激活离散化方法和一种微分逼近技术,能够在离散DNN上实现反向传播算法。对于第二个问题,我们提出了一种离散状态转换(DST)方法来在不保存隐藏权重的情况下将权重约束在一个离散空间中,以此方式,我们构建了一个统一的框架,将二进制或三进制网络作为其特例。 ,我们发现,当权重和激活值都变为三进制值时,由于只有非零权重和非零激活事件才能使控制门启动XNOR逻辑运算,因此DNN可以简化为gatedXNOR网络(或稀疏二​​进制网络)。原始的二进制网络。这保证了事件驱动的硬件设计可实现高效的移动智能。与最先进的算法相比,我们获得了更高的性能。此外,可以灵活地修改离散空间中的计算稀疏度和状态数,以使其适用于各种硬件平台。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号